7 research outputs found

    Wind Tunnel Analysis of the Airflow through Insect-Proof Screens and Comparison of Their Effect When Installed in a Mediterranean Greenhouse

    Get PDF
    The present work studies the effect of three insect-proof screens with different geometrical and aerodynamic characteristics on the air velocity and temperature inside a Mediterranean multi-span greenhouse with three roof vents and without crops, divided into two independent sectors. First, the insect-proof screens were characterised geometrically by analysing digital images and testing in a low velocity wind tunnel. The wind tunnel tests gave screen discharge coefficient values of Cd,φ of 0.207 for screen 1 (10 × 20 threads·cm−2; porosity φ = 35.0%), 0.151 for screen 2 (13 × 30 threads·cm−2; φ = 26.3%) and 0.325 for screen 3 (10 × 20 threads·cm−2; porosity φ = 36.0%), at an air velocity of 0.25 m·s−1. Secondly, when screens were installed in the greenhouse, we observed a statistical proportionality between the discharge coefficient at the openings and the air velocity ui measured in the centre of the greenhouse, ui = 0.856 Cd + 0.062 (R2 = 0.68 and p-value = 0.012). The inside-outside temperature difference ΔTio diminishes when the inside velocity increases following the statistically significant relationship ΔTio = (−135.85 + 57.88/ui)0.5 (R2 = 0.85 and p-value = 0.0011). Different thread diameters and tension affects the screen thickness, and means that similar porosities may well be associated with very different aerodynamic characteristics. Screens must be characterised by a theoretical function Cd,φ = [(2eÎŒ/Kpρ)·(1/us) + (2eY/Kp0.5)]−0.5 that relates the discharge coefficient of the screen Cd,φ with the air velocity us. This relationship depends on the three parameters that define the aerodynamic behaviour of porous medium: permeability Kp, inertial factor Y and screen thickness e (and on air temperature that determine its density ρ and viscosity ÎŒ). However, for a determined temperature of air, the pressure drop-velocity relationship can be characterised only with two parameters: ΔP = aus2 + bus

    Effect of material ageing and dirt on the behaviour of greenhouse insect-proof screens

    Get PDF
    The present work examines the variations in the aerodynamic characteristics of four insect-proof screens by means of wind tunnel tests and digital image processing. The tested insect-proof screens were examined in three different conditions: (i) in their new, unused state; (ii) under conditions of accumulated dust and dirt after a period of 3 to 4 years of use; and (iii) under clean conditions after a period of 3 to 4 years of use and a cleaning treatment with high-pressure water. The deterioration of the screens caused the mesh to become less tense, therefore increasing its thickness and improving its aerodynamic behaviour despite a slight increase of the thread diameter and a subsequent decrease of the 2-dimensional porosity. The pressure drop coefficient, Fφ, of the used but clean screens was 1.5% to 8.8% lower (for u=1.0 m/s) than that of the new ones, thus increasing the discharge coefficient, Cd,φ, by between 0.8% and 4.8% as a result of the presence of the screens. On the other hand, comparison of the used screens in their clean and unclean states showed that the accumulation of dirt has a major bearing on their aerodynamic characteristics: Fφ increased by between 16.5% and 61.2% (for u=1.0 m/s) for the unclean screens, resulting in a Cd,φ reduction of between 7.5% and 21.3% and therefore a lower natural ventilation capacity of the greenhouse. A regular cleaning treatment of the insect-proof screens is a simple measure that improves the natural ventilation capacity of the greenhouse

    An Auto-Tuning PI Control System for an Open-Circuit Low-Speed Wind Tunnel Designed for Greenhouse Technology

    Get PDF
    Wind tunnels are a key experimental tool for the analysis of airflow parameters in many fields of application. Despite their great potential impact on agricultural research, few contributions have dealt with the development of automatic control systems for wind tunnels in the field of greenhouse technology. The objective of this paper is to present an automatic control system that provides precision and speed of measurement, as well as efficient data processing in low-speed wind tunnel experiments for greenhouse engineering applications. The system is based on an algorithm that identifies the system model and calculates the optimum PI controller. The validation of the system was performed on a cellulose evaporative cooling pad and on insect-proof screens to assess its response to perturbations. The control system provided an accuracy of <0.06 m·s‟1 for airflow speed and <0.50 Pa for pressure drop, thus permitting the reproducibility and standardization of the tests. The proposed control system also incorporates a fully-integrated software unit that manages the tests in terms of airflow speed and pressure drop set points

    Application of Semi-Empirical Ventilation Models in A Mediterranean Greenhouse with Opposing Thermal and Wind Effects. Use of Non-Constant Cd (Pressure Drop Coefficient Through the Vents) and Cw (Wind Effect Coefficient)

    No full text
    The present work analyses the natural ventilation of a multi-span greenhouse with one roof vent and two side vents by means of sonic anemometry. Opening the roof vent to windward, one side vent to leeward, and the other side vents to windward (this last vent obstructed by another greenhouse), causes opposing thermal GT (m3 s−1) and wind effects Gw (m3 s−1), as outside air entering the greenhouse through the roof vent circulates downward, contrary to natural convection due to the thermal effect. In our case, the ventilation rate RM (h−1) in a naturally ventilated greenhouse fits a second order polynomial with wind velocity uo (RM = 0.37 uo2 + 0.03 uo + 0.75; R2 = 0.99). The opposing wind and thermal effects mean that ventilation models based on Bernoulli’s equation must be modified in order to add or subtract their effects accordingly—Model 1, in which the flow is driven by the sum of two independent pressure fields G M 1 = | G T 2 ± G w 2 | , or Model 2, in which the flow is driven by the sum of two independent fluxes G M 2 = | G T ± G w | . A linear relationship has been obtained, which allows us to estimate the discharge coefficient of the side vents (CdVS) and roof vent (CdWR) as a function of uo [CdVS = 0.028 uo + 0.028 (R2 = 0.92); CdWR = 0.036 uo + 0.040 (R2 = 0.96)]. The wind effect coefficient Cw was determined by applying models M1 and M2 proved not to remain constant for the different experiments, but varied according to the ratio uo/∆Tio0.5 or δ [CwM1 = exp(−2.693 + 1.160/δ) (R2 = 0.94); CwM2 = exp(−2.128 + 1.264/δ) (R2 = 0.98)]
    corecore